back to top
Κυριακή, 1 Δεκεμβρίου, 2024
ΑρχικήNewsHealthRelativistic Quantum Scars in Graphene Quantum Dots

Relativistic Quantum Scars in Graphene Quantum Dots


  • Heller, E. J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 1515–1518 (1984).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Stöckmann, H.-J. Quantum Chaos: An Introduction (American Association of Physics Teachers, 2000).

  • Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics Vol. 1 (Springer Science & Business Media, 2013).

  • Heller, E., Crommie, M., Lutz, C. & Eigler, D. Scattering and absorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Crook, R. et al. Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard. Phys. Rev. Lett. 91, 246803 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins, F. et al. Imaging electron wave functions inside open quantum rings. Phys. Rev. Lett. 99, 136807 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke, A. et al. Periodic scarred states in open quantum dots as evidence of quantum Darwinism. Phys. Rev. Lett. 104, 176801 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoki, N. et al. Direct imaging of electron states in open quantum dots. Phys. Rev. Lett. 108, 136804 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabosart, D. et al. Recurrent quantum scars in a mesoscopic graphene ring. Nano Lett. 17, 1344–1349 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, Z. et al. Imaging quantum interference in stadium-shaped monolayer and bilayer graphene quantum dots. Nano Lett. 21, 8993–8998 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ge, Z. et al. Visualization and manipulation of bilayer graphene quantum dots with broken rotational symmetry and nontrivial topology. Nano Lett. 20, 8682–8688 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, L., Lai, Y.-C., Ferry, D. K., Goodnick, S. M. & Akis, R. Relativistic quantum scars. Phys. Rev. Lett. 103, 054101 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huang, L., Xu, H.-Y., Grebogi, C. & Lai, Y.-C. Relativistic quantum chaos. Phys. Rep. 753, 1–128 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Luukko, P. J. et al. Strong quantum scarring by local impurities. Sci. Rep. 6, 37656 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keski-Rahkonen, J., Luukko, P. J., Kaplan, L., Heller, E. & Räsänen, E. Controllable quantum scars in semiconductor quantum dots. Phys. Rev. B 96, 094204 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Keski-Rahkonen, J., Ruhanen, A., Heller, E. & Räsänen, E. Quantum Lissajous scars. Phys. Rev. Lett. 123, 214101 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H., Huang, L., Lai, Y.-C. & Grebogi, C. Chiral scars in chaotic dirac fermion systems. Phys. Rev. Lett. 110, 064102 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Song, M.-Y., Li, Z.-Y., Xu, H.-Y., Huang, L. & Lai, Y.-C. Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars. Phys. Rev. Res. 1, 033008 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Keski-Rahkonen, J., Graf, A. & Heller, E. Antiscarring in chaotic quantum wells. Preprint at https://arxiv.org/abs/2403.18081 (2024).

  • Berry, M. Quantum chaology, not quantum chaos. Phys. Scr. 40, 335 (1989).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Einstein, A. Zum quantensatz von Sommerfeld und Epstein. Verh. Dtsch. Phys. Ges. 19, 82–92 (1917).

  • Stone, A. D. Einstein’s unknown insight and the problem of quantizing chaos. Phys. Today 58, 37 (2005).

    Article 

    Google Scholar
     

  • Pilatowsky-Cameo, S. et al. Ubiquitous quantum scarring does not prevent ergodicity. Nat. Commun. 12, 852 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hummel, Q., Richter, K. & Schlagheck, P. Genuine many-body quantum scars along unstable modes in Bose–Hubbard systems. Phys. Rev. Lett. 130, 250402 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Evrard, B., Pizzi, A., Mistakidis, S. I. & Dag, C. B. Quantum scars and regular eigenstates in a chaotic spinor condensate. Phys. Rev. Lett. 132, 020401 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heller, E. J. The Semiclassical Way to Dynamics and Spectroscopy (Princeton Univ. Press, 2018).

  • Zelditch, S. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bohigas, O., Giannoni, M.-J. & Schmit, C. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Sridhar, S. Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Phys. Rev. Lett. 67, 785 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein, J. & Stöckmann, H.-J. Experimental determination of billiard wave functions. Phys. Rev. Lett. 68, 2867 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chinnery, P. A. & Humphrey, V. F. Experimental visualization of acoustic resonances within a stadium-shaped cavity. Phys. Rev. E 53, 272 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kudrolli, A., Abraham, M. C. & Gollub, J. P. Scarred patterns in surface waves. Phys. Rev. E 63, 026208 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Manoharan, H., Lutz, C. & Eigler, D. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behn, W. A. et al. Measuring and tuning the potential landscape of electrostatically defined quantum dots in graphene. Nano Lett. 21, 5013–5020 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, Z. et al. Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules. Nat. Nanotechnol. 18, 250–256 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).

    Article 

    Google Scholar
     

  • Zheng, Q., Zhuang, Y.-C., Sun, Q.-F. & He, L. Coexistence of electron whispering-gallery modes and atomic collapse states in graphene/WSe2 heterostructure quantum dots. Nat. Commun. 13, 1597 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akis, R., Ferry, D. & Bird, J. Wave function scarring effects in open stadium shaped quantum dots. Phys. Rev. Lett. 79, 123 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Berry, M. V. & Mondragon, R. Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. R. Soc. Lond. A 412, 53–74 (1987).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, S. et al. Electron optics with pn junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ge, Z. Wavefunction Mapping and Magnetic Field Response of Electrostatically Defined Graphene Quantum Dots. PhD thesis, Univ. California, Santa Cruz (2023).

  • Zomer, P., Dash, S., Tombros, N. & Van Wees, B. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Goossens, A. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ge, Z. et al. Source data for “Direct visualization of relativistic quantum scars”. Zenodo. https://doi.org/10.5281/zenodo.13751637 (2024).



  • Dimitris Marizas
    Dimitris Marizashttps://cybervista.gr
    Παθιασμένος με τις νέες τεχνολογίες, με έφεση στην καινοτομία και τη δημιουργικότητα. Διαρκώς αναζητώ τρόπους αξιοποίησης της τεχνολογίας για την επίλυση προβλημάτων και τη βελτίωση της καθημερινής ζωής.
    Διάφορα από την ίδια κατηγορία

    ΑΦΗΣΤΕ ΜΙΑ ΑΠΑΝΤΗΣΗ

    εισάγετε το σχόλιό σας!
    παρακαλώ εισάγετε το όνομά σας εδώ

    Δημοφιλείς Άρθρα

    Τελευταία Νέα